152 research outputs found

    Is implicit motor imagery a reliable strategy for a brain computer interface?

    Get PDF
    Explicit motor imagery (eMI) is a widely used brain computer interface (BCI) paradigm, but not everybody can accomplish this task. Here we propose a BCI based on implicit motor imagery (iMI). We compared classification accuracy between eMI and iMI of hands. Fifteen able bodied people were asked to judge the laterality of hand images presented on a computer screen in a lateral or medial orientation. This judgement task is known to require mental rotation of a person’s own hands which in turn is thought to involve iMI. The subjects were also asked to perform eMI of the hands. Their electroencephalography (EEG) was recorded. Linear classifiers were designed based on common spatial patterns. For discrimination between left and right hand the classifier achieved maximum of 81 ± 8% accuracy for eMI and 83 ± 3% for iMI. These results show that iMI can be used to achieve similar classification accuracy as eMI. Additional classification was performed between iMI in medial and lateral orientations of a single hand; the classifier achieved 81 ± 7% for the left and 78 ± 7% for the right hand which indicate distinctive spatial patterns of cortical activity for iMI of a single hand in different directions. These results suggest that a special brain computer interface based on iMI may be constructed, for people who cannot perform explicit imagination, for rehabilitation of movement or for treatment of bodily spatial neglect

    Universal decoherence due to gravitational time dilation

    Full text link
    The physics of low-energy quantum systems is usually studied without explicit consideration of the background spacetime. Phenomena inherent to quantum theory on curved space-time, such as Hawking radiation, are typically assumed to be only relevant at extreme physical conditions: at high energies and in strong gravitational fields. Here we consider low-energy quantum mechanics in the presence of gravitational time dilation and show that the latter leads to decoherence of quantum superpositions. Time dilation induces a universal coupling between internal degrees of freedom and the centre-of-mass of a composite particle. The resulting correlations cause decoherence of the particle's position, even without any external environment. We also show that the weak time dilation on Earth is already sufficient to decohere micron scale objects. Gravity therefore can account for the emergence of classicality and the effect can in principle be tested in future matter wave experiments.Comment: 6+4 pages, 3 figures. Revised manuscript in Nature Physics (2015

    Gravity is not a Pairwise Local Classical Channel

    Get PDF
    It is currently believed that there is no experimental evidence on possibly quantum features of gravity or gravity-motivated modifications of quantum mechanics. Here we show that single-atom interference experi- ments achieving large spatial superpositions can rule out a framework where the Newtonian gravitational inter- action is fundamentally classical in the information-theoretic sense: it cannot convey entanglement. Specifically, in this framework gravity acts pairwise between massive particles as classical channels, which effectively induce approximately Newtonian forces between the masses. The experiments indicate that if gravity does reduce to the pairwise Newtonian interaction between atoms at the low energies, this interaction cannot arise from the exchange of just classical information, and in principle has the capacity to create entanglement. We clarify that, contrary to current belief, the classical-channel description of gravity differs from the model of Diosi and Penrose, which is not constrained by the same data.Comment: 13 pages, 5 figures, 2 tables, Late

    A generalization of Margolus-Levitin bound

    Full text link
    The Margolus-Levitin lower bound on minimal time required for a state to be transformed into an orthogonal state is generalized. It is shown that for some initial states new bound is stronger than the Margolus-Levitin one.Comment: 6 pages, no figures; some comments added; final version accepted for publication in Phys. Rev.

    Single electron relativistic clock interferometer

    Get PDF
    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.Comment: 9 pages, 4 figure
    • …
    corecore